Banana Xanthomonas Wilt disease (BXW) is a destructive bacterial disease that highly threatens banana production in East and Central Africa. It is caused by a bacteria known as. In this paper, a mathematical model for the dynamics and control of BXW disease is formulated and analyzed. Numerical simulations were performed to examine the impact of participatory community education programmes, clearance of Xcm bacteria in the soil, single diseased stem removal, and vertical transmission control strategies. It was found that participatory community farming education programmes, timely removal of infected banana plants, clearance of Xcm bacteria in the soil dramatically reduce the number of secondary infections hence greatly contributing to the control of the BXW disease. The study recommends that, along with the existing control measures such as sterilization of farming tools, timely removal of the male bud using a forked stick and planting healthy suckers, more emphasis should be invested in educating farmers on disease detection and management strategies and increasing the rate of clearing Xcm bacteria in the soil so as to avoid persistence of the disease in the farms.