Oxygen consumption in small tissue regions cannot be measured directly, but assessment of oxygen transport and metabolism at the regional level is possible with imaging techniques using tracer 15 O-oxygen for positron emission tomography. On the premise that mathematical modeling of tracer kinetics is the key to the interpretation of regional concentration-time curves, an axiallydistributed capillary-tissue model was developed that accounts for oxygen convection in red blood cells and plasma, nonlinear binding to hemoglobin and myoglobin, transmembrane transport among red blood cells, plasma, interstitial fluid and parenchymal cells, axial dispersion, transformation to water in the tissue, and carriage of the reaction product into venous effluent. Computational speed was maximized to make the model useful for routine analysis of experimental data. The steady-state solution of a parent model for nontracer oxygen governs the solutions for parallel-linked models for tracer oxygen and tracer water. The set of models provides estimates of oxygen consumption, extraction, and venous pO 2 by fitting model solutions to experimental tracer curves of the regional tissue content or venous outflow. The estimated myocardial oxygen consumption for the whole heart was in good agreement with that measured directly by the Fick method and was relatively insensitive to noise. General features incorporated in the model make it widely applicable to estimating oxygen consumption in other organs from data obtained by external detection methods such as positron emission tomography.