2021
DOI: 10.3390/s21020519
|View full text |Cite
|
Sign up to set email alerts
|

A Maximum-Information-Minimum-Redundancy-Based Feature Fusion Framework for Ship Classification in Moderate-Resolution SAR Image

Abstract: High-resolution synthetic aperture radar (SAR) images are mostly used in the current field of ship classification, but in practical applications, moderate-resolution SAR images that can offer wider swath are more suitable for maritime surveillance. The ship targets in moderate-resolution SAR images occupy only a few pixels, and some of them show the shape of bright spots, which brings great difficulty for ship classification. To fully explore the deep-level feature representations of moderate-resolution SAR im… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 37 publications
0
3
0
Order By: Relevance
“…Selain itu, kapal dapat dideteksi menggunakan radar, terutama dalam cuaca buruk atau saat jarak pandang buruk. Synthetic aperture radar (SAR), yang berfungsi secara terus menerus dan tidak terpengaruh oleh kondisi cuaca yang beragam, telah diimplementasikan secara luas dalam pemantauan kapal dan maritim (Zhou et al, 2021). Selain itu, pemantauan maritim telah menunjukkan harapan untuk penerapan radar pasif GNSS yang menggunakan sinyal GNSS sebagai penerang (Pastina et al, 2021).…”
Section: Pendahuluanunclassified
“…Selain itu, kapal dapat dideteksi menggunakan radar, terutama dalam cuaca buruk atau saat jarak pandang buruk. Synthetic aperture radar (SAR), yang berfungsi secara terus menerus dan tidak terpengaruh oleh kondisi cuaca yang beragam, telah diimplementasikan secara luas dalam pemantauan kapal dan maritim (Zhou et al, 2021). Selain itu, pemantauan maritim telah menunjukkan harapan untuk penerapan radar pasif GNSS yang menggunakan sinyal GNSS sebagai penerang (Pastina et al, 2021).…”
Section: Pendahuluanunclassified
“…Each method has its outstanding aspects. Zhou et al proposed a projection curve model matching-based method for packaging bottle detection, using projection completeness, the weighted sum of offset expectation, and variance of matching points relative to the model as similarity measures, and using packaging bottle model matching to complete packaging bottle detection [12]. Teng et al proposed a packaging bottle detection algorithm based on a priori shape information and an active contour model, using color and edge information to remove shadows and extract packaging bottle contour; introducing a priori knowledge of packaging bottle shape, establishing an a priori shape model of packaging bottle with the implicit representation of level set symbols, and constructing an active contour energy construction function with this constraint, using the variational method to find its minimum value, using shape alignment and level set method e segmentation curve of the packaging bottle is evolved to obtain the contour of the packaging bottle and then complete the detection [13].…”
Section: Current Status Of Researchmentioning
confidence: 99%
“…In the early days, classification of ships from SAR images was explored using polarimetric data [1] and it required an intensive expertise in this domain. With the development and advancement of machine learning (ML) techniques, several studies have 2 developed and tested ML algorithms with handcrafted features such as scattering features [2][3][4], superstructure scattering features [5,6], geometric features [7,8], histogram of oriented gradient (HOG) [9], fusion features [10,11], single-pol COSMO-SkyMed images using the statistical and structural feature vector [12], Although these ML techniques were capable of classifying ships automatically from the SAR images, their performance is limited by the chosen handcrafted features.…”
Section: Introductionmentioning
confidence: 99%