A series of research topics on the eye is reviewed with the aim of illustrating how integrative and systems-biological approaches can be used to understand complex properties and functions of ocular tissues. Emphasis is placed on the diversity of physiological systems represented in the eye, and the variety of approaches required to analyze those systems, both empirically and theoretically. Modeling and empirical studies reviewed focus mainly on problems that the eye presents, in the broad areas of biomechanics and fluid dynamics from the molecular to the whole-organ scale. Attention is given to the relevance of these studies in human disease and the current potential for development of medical therapies based upon a biophysical, integrative modeling approach. The creation of a multiscale hierarchy of numerical models of the eye is proposed as an important and unifying aim of integrative eye research.