Inertial measurement unit (IMU) (an IMU usually contains three gyroscopes and accelerometers) is the key sensor to construct a selfcontained inertial navigation system (INS). IMU manufactured through the Micromechanics Electronics Manufacturing System (MEMS) technology becomes more popular, due to its smaller column, lower cost, and gradually improved accuracy. However, limited by the manufacturing technology, the MEMS IMU raw measurement signals experience complicated noises, which cause the INS navigation solution errors diverge dramatically over time. For addressing this problem, an advanced Neural Architecture Search Recurrent Neural Network (NAS-RNN) was employed in the MEMS gyroscope noise suppressing. NAS-RNN was the recently invented artificial intelligence method for time series problems in data science community. Different from conventional method, NAS-RNN was able to search a more feasible architecture for selected application. In this paper, a popular MEMS IMU STIM300 was employed in the testing experiment, and the sampling frequency was 125 Hz. e experiment results showed that the NAS-RNN was effective for MEMS gyroscope denoising; the standard deviation values of denoised three-axis gyroscope measurements decreased by 44.0%, 34.1%, and 39.3%, respectively. Compared with the Long Short-Term Memory Recurrent Neural Network (LSTM-RNN), the NAS-RNN obtained further decreases by 28.6%, 3.7%, and 8.8% in standard deviation (STD) values of the signals. In addition, the attitude errors decreased by 26.5%, 20.8%, and 16.4% while substituting the LSTM-RNN with the NAS-RNN.