An incremental hybrid natural element method (HNEM) is proposed to solve the two-dimensional elasto-plastic problems in the paper. The corresponding formulae of this method are obtained by consolidating the hybrid stress element and the incremental Hellinger-Reissner variational principle into the NEM. Using this method, the stress and displacement variables at each node can be directly obtained after the stress and displacement interpolation functions are properly constructed. The numerical examples are given to show the advantages of the proposed algorithm of the HNEM, and the solutions for the elasto-plastic problems are better than those of the NEM. In addition, the performance of the proposed algorithm is better than the recover stress method using moving least square interpolation.