Ralstonia solanacearum species complex (RSSC) strains are bacteria that colonize plant xylem and cause vascular wilt diseases. However, individual strains vary in host range, optimal disease temperatures, and physiological traits. To increase our understanding of the evolution, diversity, and biology of the RSSC, we performed a meta-analysis of 100 representative RSSC genomes. These 100 RSSC genomes contain 4,940 genes on average, and a pangenome analysis found that there are 3,262 genes in the core genome (~60% of the mean RSSC genome) with 13,128 genes in the extensive flexible genome. Although a core genome phylogenetic tree and a genome similarity matrix aligned with the previously named species (R. solanacearum, R. pseudosolanacearum, R. syzygii) and phylotypes (I-IV), these analyses also highlighted an unrecognized sub-clade of phylotype II. Additionally, we identified differences between phylotypes with respect to gene content and recombination rate, and we delineated population clusters based on the extent of horizontal gene transfer. Multiple analyses indicate that phylotype II is the most diverse phylotype, and it may thus represent the ancestral group of the RSSC. Additionally, we also used our genome-based framework to test whether the RSSC sequence variant (sequevar) taxonomy is a robust method to define within-species relationships of strains. The sequevar taxonomy is based on alignments of a single conserved gene (egl). Although sequevars in phylotype II describe monophyletic groups, the sequevar system breaks down in the highly recombinogenic phylotype I, which highlights the need for an improved cost-effective method for genotyping strains in phylotype I. Finally, we enabled quick and precise genome-based identification of newly sequenced Ralstonia strains by assigning Life Identification Numbers (LINs) to the 100 strains and by circumscribing the RSSC and its sub-groups in the LINbase Web service.