The transient electromagnetic (TEM) method has long been applied in tunnel advanced prediction. However, it remains questionable to what extent a geologic anomaly body will influence the induced electromagnetic response in front of the heading face. The dilemma is partly because observed TEM data are frequently interpreted by empirical formulas or proportional relationships, and a quantitative measurement has not been established. In this paper, we strive to understand the TEM characteristics from a 3D finite-element time-domain (FETD) modeling aspect. The modeling algorithm is based on unstructured space meshing and unconditional stable time discretization, which ensures its accuracy and stability. The modeling algorithm is verified by a half-space model, in which the misfit of late-time channels that we are concerned with is generally below 1%. The algorithm has also been utilized to carry out the TEM response of tunnel models with different types of TEM devices. Through model studies, we find that both the traditional central-loop device and the recently developed weak-coupling opposing-coil device are feasible in tunnel advanced detection. Nevertheless, the latter type of device better distinguishes low-resistivity anomalies at 30 m ahead of the heading face with a relative difference (between models with and without the anomaly) of more than 1000% at certain time channels, compared with only a 10% difference of the central-loop device. Also, we conclude that the vertical electromagnetic field component should be recorded and interpreted together with the horizontal field to provide more convincing results.