High frequency surface wave radar (HFSWR) has been successfully developed for early warning, especially for vessel target detection. However, the system’s performance is consistently constrained by external environmental noise, particularly directional noise, which presents a new problem for HFSWR. Anisotropic directional noise has complex behavior, and its noise level is generally increased by 10 to 15 dB compared to traditional noise floor level. Suppressing varying directional noise and exploring obscured targets are challenging tasks for HFSWR. In this paper, a novel algorithm based on angle-Doppler joint multi-eigenvector synthesis, which considers the angle-Doppler map of radar echoes, is adopted to analyze the characteristics of the directional noise. Given the measured data set, we first analyze the directional noise-spatial correlation. Then, an algorithm based on sliding main lobe cancellation (SL-MLC) based on a sliding single-notch space filter (SSNSF) is proposed to block target components and get training data that contains precise directional noise information. Finally, the method is examined by measured data, and the results indicate the method has better performance for directional noise than the compared method.