2024
DOI: 10.11591/ijai.v13.i1.pp888-898
|View full text |Cite
|
Sign up to set email alerts
|

A method for missing values imputation of machine learning datasets

Youssef Hanyf,
Hassan Silkan

Abstract: <p>In machine learning applications, handling missing data is often required in the pre-processing phase of datasets to train and test models. The class center missing value imputation (CCMVI) is among the best imputation literature methods in terms of prediction accuracy and computing cost. The main drawback of this method is that it is inadequate for test datasets as long as it uses class centers to impute incomplete instances because their classes should be assumed as unknown in real-world classificat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?