2008
DOI: 10.1177/0165551508088968
|View full text |Cite
|
Sign up to set email alerts
|

A method for multilingual text mining and retrieval using growing hierarchical self-organizing maps

Abstract: With the increasing number of multilingual texts in the internet, multilingual text retrieval techniques have become an important research issue. However, the discovery of relationships between different languages remains an open problem. In this paper we propose a method, which applies the growing hierarchical self-organizing map (GHSOM) model, to discover knowledge from multilingual text documents. Multilingual parallel corpora were trained by the GHSOM to generate hierarchical feature maps. A discovery proc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0
2

Year Published

2011
2011
2019
2019

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 15 publications
(8 citation statements)
references
References 28 publications
0
6
0
2
Order By: Relevance
“…Para ello trasladan las palabras de la consulta a conceptos. Por otro lado, las redes neuronales SOM (Self-Organized Maps) [5] han sido aplicadas exitosamente en varios trabajos sobre organización y búsqueda de documentos [6,7,8,9,10,11]. Por ejemplo, Fernandes y Ludermir [12] propusieron un método de extracción de características para representación de documentos relacionados mediante redes neuronales auto-organizadas.…”
Section: Trabajo Relacionadounclassified
See 1 more Smart Citation
“…Para ello trasladan las palabras de la consulta a conceptos. Por otro lado, las redes neuronales SOM (Self-Organized Maps) [5] han sido aplicadas exitosamente en varios trabajos sobre organización y búsqueda de documentos [6,7,8,9,10,11]. Por ejemplo, Fernandes y Ludermir [12] propusieron un método de extracción de características para representación de documentos relacionados mediante redes neuronales auto-organizadas.…”
Section: Trabajo Relacionadounclassified
“…Para ello se genera una matriz de contingencia que denota la ocurrencia de un sustantivo con los diferentes verbos con los que está relacionado en el texto. De las relaciones sustantivo-verbo se obtienen los lexemas para ambos, quedando una relación de lexema-de-sustantivo -lexema-de-verbo 9 . Las relaciones sustantivo-verbo se representan siguiendo la idea de las matrices palabra-documento del Modelo Espacio Vectorial (MEV) tomando en cuenta el peso de dichas relaciones, el peso se calcula mediante TF-IDF [33].…”
Section: Representación De Textounclassified
“…Also, Chinese text has no delimiters to mark word boundaries, while English text uses a space as word delimiter. Several methods were proposed to deal with Chinese text [29]- [32], but they are not efficient or sufficiently robust to process research proposals.…”
Section: Ontology-based Text Mining To Cluster Research Proposalsmentioning
confidence: 99%
“…Documents written in different languages were first clustered and organized into hierarchies using the growing hierarchical self-organizing map model. They have also noted that in the domain of multilingual text mining, little attention has to be paid for building multilingual document hierarchies and deriving associations from such hierarchies [48]. Rowena Chau et al (2004), have discussed about the multilingual text mining approach to cross-lingual text retrieval (CLTR), and their multilingual text mining approach for automatically discovering the multilingual linguistic knowledge contributes to cross-lingual text retrieval by providing a more affordable alternative to the costly manually constructed linguistic resources.…”
Section: Multilingual Text Mining (Mltm)mentioning
confidence: 99%