Multispectral remote sensing images contain abundant information about the distribution and reflectance of ground objects, playing a crucial role in target detection, environmental monitoring, and resource exploration. However, due to the complexity of the imaging process in multispectral remote sensing, image blur is inevitable, and the blur kernel is typically unknown. In recent years, many researchers have focused on blind image deblurring, but most of these methods are based on single-band images. When applied to CASEarth satellite multispectral images, the spectral correlation is unutilized. To address this limitation, this paper proposes a novel approach that leverages the characteristics of multispectral data more effectively. We introduce an inter-band gradient similarity prior and incorporate it into the patch-wise minimal pixel (PMP)-based deblurring model. This approach aims to utilize the spectral correlation across bands to improve deblurring performance. A solution algorithm is established by combining the half-quadratic splitting method with alternating minimization. Subjectively, the final experiments on CASEarth multispectral images demonstrate that the proposed method offers good visual effects while enhancing edge sharpness. Objectively, our method leads to an average improvement in point sharpness by a factor of 1.6, an increase in edge strength level by a factor of 1.17, and an enhancement in RMS contrast by a factor of 1.11.