Artificial neural network (ANN) is widely applied as a predictive tool to solve complex problems. The performance of an ANN model is significantly affected by the applied architectural parameters such as the node number in a hidden layer, which is largely determined by the complexity of cases, the quality of the dataset, and the sufficiency of variables. In the present study, the impact of variation/response space complexity and variable completeness on backpropagation (BP) ANN model establishment was investigated, with a steel ladle lining from secondary steel metallurgy as the case study. The variation dataset for analysis comprised 160 lining configurations of ten variables. Thermal and thermomechanical responses were obtained via finite element (FE) modeling with elastic material behavior. Guidelines were proposed to define node numbers in the hidden layer for each response as a function of the node number in the input layer weighted with the percent value of the significant variables contributing above 90% to the response, as well as the node number in the output layer. The minimum numbers of input variables required to achieve acceptable prediction performance were three, five, and six for the maximum compressive stress, the end temperature, and the maximum tensile stress. empirical equations into other fields are far less satisfying. Equations (1) and (2) show more robust applications, yet they yield a rather larger number for trials.