Introduced by S.A. Lomov, the concept of a pseudoanalytic (pseudoholomorphic) solution laid the foundation for the development of the singular perturbation analytical theory. In order for this concept to work in case of linear problems, an apparatus for the theory of exponential type vector spaces was developed. When considering nonlinear singularly perturbed problems, an algebraic approach is currently used. This approval is based on the properties of algebra homomorphisms for holomorphic functions with various numbers of variables, as a result of which it is possible to obtain pseudoholomorphic solutions. In this paper, formally singularly perturbed equations are considered in topological algebras, which allows the authors to formulate the main concepts of the singular perturbation analytical theory from the standpoint of maximal generality.