2022
DOI: 10.5705/ss.202019.0388
|View full text |Cite
|
Sign up to set email alerts
|

A Method of Local Influence Analysis in Sufficient Dimension Reduction

Abstract: A general framework for local influence analysis is developed for sufficient dimension reduction when data likelihood is absent and the inference result is not a vector but a space. A clear and intuitive interpretation of this approach is described. Its application to sliced inverse regression is presented together with invariance properties. A data trimming strategy is also suggested, which is based on the influence assessment for observations provided by our method. A simulation study and a real-data analysi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
14
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
1
1

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(14 citation statements)
references
References 35 publications
0
14
0
Order By: Relevance
“…Let a vector ω=()ω1,ω2,,ωnT denote the perturbation introduced to the model, and boldBtrue^false(bold-italicωfalse)=trueb^1false(bold-italicωfalse),trueb^2false(bold-italicωfalse),,trueb^trueK^false(bold-italicωfalse) where trueb^1false(bold-italicωfalse),trueb^2false(bold-italicωfalse),,trueb^trueK^false(bold-italicωfalse) represent the estimates of the dimension reduction vectors under the perturbed model. Based on the trace correlation proposed by Hooper [25], Chen et al [14] constructed a space displacement function Dfalse(bold-italicωfalse) for the local influence analysis of sufficient dimension reduction, which is defined by Dfalse(bold-italicωfalse)=11trueK^false∑i=1trueK^ri2=11trueK^trboldPtrueX˜TboldBtrue^boldPtrueX˜TboldBtrue^false(bold-italicωfalse), where ri denotes the …”
Section: The Framework Of Local Influence Analysis For Satmementioning
confidence: 99%
See 4 more Smart Citations
“…Let a vector ω=()ω1,ω2,,ωnT denote the perturbation introduced to the model, and boldBtrue^false(bold-italicωfalse)=trueb^1false(bold-italicωfalse),trueb^2false(bold-italicωfalse),,trueb^trueK^false(bold-italicωfalse) where trueb^1false(bold-italicωfalse),trueb^2false(bold-italicωfalse),,trueb^trueK^false(bold-italicωfalse) represent the estimates of the dimension reduction vectors under the perturbed model. Based on the trace correlation proposed by Hooper [25], Chen et al [14] constructed a space displacement function Dfalse(bold-italicωfalse) for the local influence analysis of sufficient dimension reduction, which is defined by Dfalse(bold-italicωfalse)=11trueK^false∑i=1trueK^ri2=11trueK^trboldPtrueX˜TboldBtrue^boldPtrueX˜TboldBtrue^false(bold-italicωfalse), where ri denotes the …”
Section: The Framework Of Local Influence Analysis For Satmementioning
confidence: 99%
“…Let ω=bold-italicω0+th where bold-italicω0 represents no perturbation and h denotes a standardized vector. Following Chen et al [14], we call the surface ()bold-italicωT,D(ω)T the influence graph and call the curve Lfalse(boldhfalse)=()()ω0goodbreak+tboldhT,D()ω0goodbreak+tboldhT:tscriptR1. the lifted line along the direction h on the influence graph, which passes through ()bold-italicω0T,D()bold-italicω0T. To investigate the local behavior of Lfalse(boldhfalse) at t=0, the following assumptions are required.Assumption (1) rkfalse(trueX˜false)=p; (2) For any given h, boldBtrue^ω0+th is continuous in a neighborhood of t=0; (3) There is a matrix boldFboldBh such that …”
Section: The Framework Of Local Influence Analysis For Satmementioning
confidence: 99%
See 3 more Smart Citations