2022
DOI: 10.1145/3570733.3570737
|View full text |Cite
|
Sign up to set email alerts
|

A method of named entity recognition for Tigrinya

Abstract: This paper proposes a method for Named-Entity Recognition (NER) for a low-resource language, Tigrinya, using a pre-trained language model. Tigrinya is a morphologically rich, although one of the underrepresented in the field of NLP. This is mainly due to the limited amount of annotated data available. To address this problem, we present the first publicly available datasets of NER for Tigrinya containing two versions, namely, (V1 and V2) annotated manually. The V1 and V2 datasets contain 69,309 and 40,627 toke… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 20 publications
0
0
0
Order By: Relevance