2022
DOI: 10.1016/j.apenergy.2022.120161
|View full text |Cite
|
Sign up to set email alerts
|

A method of short-term risk and economic dispatch of the hydro-thermal-wind-PV hybrid system considering spinning reserve requirements

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
5
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 17 publications
(6 citation statements)
references
References 54 publications
0
5
0
1
Order By: Relevance
“…By choosing spv,npvmax=Apv,npvamp·ppv,npvmax$s_{\mathrm{pv}, n_{\mathrm{pv}}}^{\max }=A_{\mathrm{pv},n_{\mathrm{pv}}}^{\mathrm{amp}} \cdot p_{\mathrm{pv}, n_{\mathrm{pv}}}^{\max }$, the reactive power supported by the inverter of PVG n pv (npvNpv$n_{\mathrm{pv}} \in \mathcal {N_{\rm {pv}}}$) can be relaxed as [12] (Apv,npvamp)21·ppv,npvmaxqpv,npvt(Apv,npvamp)21·ppv,npvmax$$\begin{eqnarray} \hspace*{-12pt}-\sqrt {{\big(A_{\mathrm{pv},n_{\mathrm{pv}}}^{\mathrm{amp}}\big)}^{2}-1} \cdot {p}_{\mathrm{pv}, n_{\mathrm{pv}}}^{\max } \le q_{\mathrm{pv}, n_{\mathrm{pv}}}^{t} \le \sqrt {{\big(A_{\mathrm{pv},n_{\mathrm{pv}}}^{\mathrm{amp}}\big)}^{2}-1} \cdot {p}_{\mathrm{pv}, n_{\mathrm{pv}}}^{\max } \end{eqnarray}$$where Apv,npvamp$A_{\mathrm{pv},n_{\mathrm{pv}}}^{\mathrm{amp}}$ is the amplification factor of ppv,npvmax$p_{\mathrm{pv}, n_{\mathrm{pv}}}^{\max }$. In addition, to limit the change rate of a PVG's output power at adjacent time, (ppv,npvt+1ppv,npvt$p_{\mathrm{pv}, n_{\mathrm{pv}}}^{t+1}-p_{\mathrm{pv}, n_{\mathrm{pv}}}^{t}$) satisfies [41] …”
Section: Optimal Allocation Framework Of Photovoltaic Generations In ...mentioning
confidence: 99%
See 3 more Smart Citations
“…By choosing spv,npvmax=Apv,npvamp·ppv,npvmax$s_{\mathrm{pv}, n_{\mathrm{pv}}}^{\max }=A_{\mathrm{pv},n_{\mathrm{pv}}}^{\mathrm{amp}} \cdot p_{\mathrm{pv}, n_{\mathrm{pv}}}^{\max }$, the reactive power supported by the inverter of PVG n pv (npvNpv$n_{\mathrm{pv}} \in \mathcal {N_{\rm {pv}}}$) can be relaxed as [12] (Apv,npvamp)21·ppv,npvmaxqpv,npvt(Apv,npvamp)21·ppv,npvmax$$\begin{eqnarray} \hspace*{-12pt}-\sqrt {{\big(A_{\mathrm{pv},n_{\mathrm{pv}}}^{\mathrm{amp}}\big)}^{2}-1} \cdot {p}_{\mathrm{pv}, n_{\mathrm{pv}}}^{\max } \le q_{\mathrm{pv}, n_{\mathrm{pv}}}^{t} \le \sqrt {{\big(A_{\mathrm{pv},n_{\mathrm{pv}}}^{\mathrm{amp}}\big)}^{2}-1} \cdot {p}_{\mathrm{pv}, n_{\mathrm{pv}}}^{\max } \end{eqnarray}$$where Apv,npvamp$A_{\mathrm{pv},n_{\mathrm{pv}}}^{\mathrm{amp}}$ is the amplification factor of ppv,npvmax$p_{\mathrm{pv}, n_{\mathrm{pv}}}^{\max }$. In addition, to limit the change rate of a PVG's output power at adjacent time, (ppv,npvt+1ppv,npvt$p_{\mathrm{pv}, n_{\mathrm{pv}}}^{t+1}-p_{\mathrm{pv}, n_{\mathrm{pv}}}^{t}$) satisfies [41] …”
Section: Optimal Allocation Framework Of Photovoltaic Generations In ...mentioning
confidence: 99%
“…For the active and the reactive power of BESS n bess (nbessNbess$\forall n_{\rm {bess}} \in \mathcal {N}_{\rm {bess}}$), the following constraints should be satisfied [12, 41]. pbess,nbessminbadbreak≤pbess,nbesstgoodbreak≤pbess,nbessmax$$\begin{equation} p_{\text{bess},n_{\rm {bess}}}^{\min } \le p_{\text{bess}, n_{\mathrm{bess}}}^t \le p_{\text{bess},n_{\rm {bess}}}^{\max } \end{equation}$$ badbreak−10%×pbess,nbessmaxgoodbreak≤pbess,nbesst+1goodbreak−pbess,nbesstgoodbreak≤10%×pbess,nbessmax$$\begin{equation} -10\% \times p_{\text{bess},n_{\rm {bess}}}^{\max } \le p_{\text{bess}, n_{\mathrm{bess}}}^{t+1}-p_{\text{bess}, n_{\mathrm{bess}}}^t \le 10\% \times p_{\text{bess},n_{\rm {bess}}}^{\max } \end{equation}$$ trueright0goodbreak≤qbess,nbesstgoodbreak≤true(Abess,nbessamptrue)21·pbess,nbessmax,0.33emleftif0.33empbess,nbesst0rightbadbreak−true(Abess,nbessamptrue)21·pbess,nbessmaxgoodbreak≤qbess,nbesstgoodbreak≤0,0.33emle...…”
Section: Optimal Allocation Framework Of Photovoltaic Generations In ...unclassified
See 2 more Smart Citations
“…Generally, the difference between predicted output and actual output can be used to illustrate this uncertainty [10,11]. To extract and fit uncertain factors, one can utilize specific models such as the time sequence model, probability distribution model, and deep learning model [12]. Then, random wind-PV output can be obtained using random sampling and multi-scenario generation technology [13].…”
Section: Literature Reviewmentioning
confidence: 99%