[1] Droughts, like floods, are extreme expressions of the river flow dynamics. Here, droughts are intended as episodes during which the streamflow is below a given threshold, and are described as multivariate events characterized by two variables: average intensity and duration. In this work, we introduce the new concept of Dynamic Return Period, formulated using the theory of Copulas, and calculated via a Survival Kendall's approach. We show how it can be used (i) to monitor the temporal evolution of a drought event, and (ii) to perform real time assessment. In addition, a randomization strategy is introduced, in order to get rid of repeated measurements, which may adversely affect the statistical analysis of the available data, as well as the calculation of the return periods of interest: a practical example is shown, involving the fit of the drought duration distribution. The case study of the Po river basin (Northern Italy) is used as an illustration.