2009
DOI: 10.1080/00207160902760423
|View full text |Cite
|
Sign up to set email alerts
|

A method to improve the computation of tidal potential in the equilibrium configuration of a close binary system

Abstract: Registro de acceso restringido Este recurso no está disponible en acceso abierto por política de la editorial. No obstante, se puede acceder al texto completo desde la Universitat Jaume I o si el usuario cuenta con suscripción. Registre d'accés restringit Aquest recurs no està disponible en accés obert per política de l'editorial. No obstant això, es pot accedir al text complet des de la Universitat Jaume I o si l'usuari compta amb subscripció. Restricted access item This item isn't open access because of publ… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2017
2017
2019
2019

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 6 publications
0
1
0
Order By: Relevance
“…It is advisable to develop, by using the Neumann series, the equipotential surfaces in series whose terms are spherical harmonics r=a{}1+truep=03pttrueq=ppfp,qfalse(afalse)0.1emYp,qfalse(θ,λfalse), where f p , q ( a ) are amplitudes of order less than or equal to the small parameter ω 2 , where trueω is the angular velocity vector of the system, and Y p , q ( θ , λ ) are the spherical harmonics in real form …”
Section: Introductionmentioning
confidence: 99%
“…It is advisable to develop, by using the Neumann series, the equipotential surfaces in series whose terms are spherical harmonics r=a{}1+truep=03pttrueq=ppfp,qfalse(afalse)0.1emYp,qfalse(θ,λfalse), where f p , q ( a ) are amplitudes of order less than or equal to the small parameter ω 2 , where trueω is the angular velocity vector of the system, and Y p , q ( θ , λ ) are the spherical harmonics in real form …”
Section: Introductionmentioning
confidence: 99%