This paper proposes a reliable and cost-effective two-phase methodology to predict crack propagation life in generic two-dimensional (2D) structural components. First, the usually curved fatigue crack path and its stress-intensity factors are calculated at small crack increments in a specialized finite-element software, using automatic remeshing algorithms, special crack tip elements and appropriate crack increment criteria. Then, the computed stress-intensity factors are transferred to a powerful general-purpose fatigue-design program, which has been designed to predict both initiation and propagation fatigue lives by means of classical design methods. Particularly, its crack propagation module accepts any K I expression and any crack growth rate model, considering sequence effects such as overload-induced crack retardation to deal with 1D and 2D crack propagation under variable amplitude loading. Non-trivial application examples compare the numerical simulation results with those measured in physical experiments.