In this current work, a new methodology based on the square of mode shape curvature (SMSC) is presented that relates the mode shapes and its curvature changes before and after the damage for localization and sizing of the surface crack in plate-type structures. The significance of this method is it has the capability to portray accurate shape and exact location of the surface crack in a plate-like structure which are related to low and high elastic modes on dense and coarse measurement grids. The efficiency of the proposed SMSC is examined using experimental and numerical data acquired from modal analysis on the aluminum plate containing single and multi-surface cracks with a fixed-free condition using non-contact measurement a scanning laser vibrometer and on simple finite element plate model. As evidence of experimental and numerical study results, highly accurate crack characterization has been attained through the proposed method. In implementing this method, only a few modes of the structure are required. Further, the impact of the mode order on the effectiveness of crack detection, boundary distortion treatment, and grid density analysis was also performed by the proposed method.