In a recent work, a sensitivity analysis methodology was described that allows for a visual display of forecast sensitivity, with respect to model parameters, across a gridded forecast field. In that approach, sensitivity was assessed with respect to model parameters that are continuous in nature. Here, the analogous methodology is developed for situations involving noncontinuous (discrete or categorical) model parameters. The method is variance based, and the variances are estimated via a random-effects model based on 2k−p fractional factorial designs and Graeco-Latin square designs. The development is guided by its application to model parameters in the stochastic kinetic energy backscatter scheme (SKEBS), which control perturbations at unresolved, subgrid scales. In addition to the SKEBS parameters, the effect of daily variability and replication (both, discrete factors) are also examined. The forecasts examined are for precipitation, temperature, and wind speed. In this particular application, it is found that the model parameters have a much weaker effect on the forecasts as compared to the effect of daily variability and replication, and that sensitivities, weak or strong, often have a distinctive spatial structure that reflects underlying topography and/or weather patterns. These findings caution against fine-tuning methods that disregard 1) sources of variability other than those due to model parameters, and 2) spatial structure in the forecasts.