With attention increasing regarding the level of air pollution in different metropolitan and industrial areas worldwide, interest in expanding the monitoring networks by low-cost air quality sensors is also increasing. Although the role of these small and affordable sensors is rather supplementary, determination of the measurement uncertainty is one of the main questions of their applicability because there is no certificate for quality assurance of these non-reference technologies. This paper presents the results of almost one-year field testing measurements, when the data from different low-cost sensors (for SO2, NO2, O3, and CO: Cairclip, Envea, FR; for PM1, PM2.5, and PM10: PMS7003, Plantower, CHN, and OPC-N2, Alphasense, UK) were compared with co-located reference monitors used within the Czech national ambient air quality monitoring network. The results showed that in addition to the given reduced measurement accuracy of the sensors, the data quality depends on the early detection of defective units and changes caused by the effect of meteorological conditions (effect of air temperature and humidity on gas sensors and effect of air humidity with condensation conditions on particle counters), or by the interference of different pollutants (especially in gas sensors). Comparative measurement is necessary prior to each sensor’s field applications.