2014
DOI: 10.1080/10962247.2014.996268
|View full text |Cite
|
Sign up to set email alerts
|

A methodology to estimate uncertainty for emission projections through sensitivity analysis

Abstract: Air pollution abatement policies must be based on quantitative information on current and future emissions of pollutants. As emission projections uncertainties are inevitable and traditional statistical treatments of uncertainty are highly time/resources consuming, a simplified methodology for nonstatistical uncertainty estimation based on sensitivity analysis is presented in this work. The methodology was applied to the "with measures" scenario for Spain, concretely over the 12 highest emitting sectors regard… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2018
2018
2021
2021

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 24 publications
0
1
0
1
Order By: Relevance
“…As Lumbreras et al (2009Lumbreras et al ( , 2015 point out, uncertainties are inevitable when the GHG emissions inventories are estimated. Therefore, an assessment of uncertainties related to GHG emissions inventories is important to provide useful information for policymakers about the potential limitations of the findings.…”
Section: Methodsmentioning
confidence: 99%
“…As Lumbreras et al (2009Lumbreras et al ( , 2015 point out, uncertainties are inevitable when the GHG emissions inventories are estimated. Therefore, an assessment of uncertainties related to GHG emissions inventories is important to provide useful information for policymakers about the potential limitations of the findings.…”
Section: Methodsmentioning
confidence: 99%
“…Sin embargo, en el proceso de elaboración de los IE se presenta un sinnúmero de incertidumbres (Yumimoto y Uno 2006, Lumbreras et al 2015 que no están cuantificadas o no son reportadas por sus autores y producen errores en las simulaciones numéricas (IPCC 2000, Hao et al 2002, Streets et al 2003, Chang y Hanna 2004, Borrego et al 2008, Schultz 2008, Raadgever et al 2011, Miller et al 2012. Por ello se requiere el desarrollo continuo de metodologías para actualizar y ajustar sus datos (Lumbreras et al 2009, Li et al 2010.…”
Section: Introductionunclassified