In this paper, Kaluza-Klein theory is revisited and its implications are elaborated. We show that electromagnetic 4-potential can be considered as a shearing-like deformation of a 5-dimensional (5D) manifold along the fifth (5th) axis. The charge-to-mass ratio has a physical meaning of the ratio between the movement along the direction of the 5th axis and the movement in the 4D spacetime. In order to have a 5D matter which is consistent with the construction of the 5D manifold, a notion of particle-thread is suggested. Examinations on the compatibility of reference frames reveal a covariance breaking of the 5th dimension. The field equations which extend Einstein's field equations give the total energy-momentum tensor as a sum of that of matter, electromagnetic field, and the interaction between electric current and electromagnetic potential. Finally, the experimental implications are calculated for the weak potential case.