In recent years, many researches have been carried out on piezoelectric multi-rotor structures. This paper describes the analysis, development and experimental process of an ultrasonic multi-cell piezoelectric motor using a multi-rotor structure. In this design, three independent cells have been integrated into a mechatronic system. Analytical model and finite element method are used for modal and dynamic analysis of the proposed motor. The multicell motor prototype has been manufactured and tested in the laboratory. Finally, the results of analytical, simulations and experimental investigation have been compared. The compared results are in satisfactory agreement. The measured parameters were: resonance frequency characteristics, mechanical characteristics of the single actuator and the complete assembled motor. The maximum speed and load of the motor have been determined. The maximum speed of 512 rpm was obtained with a voltage of 86 Vrms and the maximum stall torque was 120 mNm. Finally, the multi-rotor structure was compared with other rotary ultrasonic structures.