The nail is a unique epithelial skin appendage made up of a fully keratinized nail plate. The nail can be affected in several systemic illnesses, dermatological diseases, and inherited nail disorders. Nail dystrophies can present as isolated disorders or as a part of syndromes. Substantial progress has been achieved in the management and diagnosis of nail diseases; however, not much is known about the underlying molecular controls of nail growth. The homeostasis and development of the nail appendage depend on the intricate interactions between the epidermis and underlying mesenchyme, and comprise different signaling pathways such as the WNT signaling pathway. Digit-tip regeneration in mice and humans has been a known fact for the past six decades; however, only recently the underlying biological mechanisms by which the nail organ achieves digit regeneration have been elucidated. Moreover, significant progress has been made in identifying nail stem cells and localizing stem cell niches in the nail unit. More fascinating, however, is the role they play in orchestrating the processes that lead to the regeneration of the digit. Further elucidating the role of nail stem cells and the signaling pathways driving epithelial-mesenchymal interactions in the nail unit might contribute to the development of novel therapeutic tools for amputees.