Soap bubbles are widely appreciated for their fragile nature and their colorful appearance. The natural sciences and, in extension, computer graphics, have comprehensively studied the mechanical behavior of films and foams, as well as the optical properties of thin liquid layers. In this paper, we focus on the dynamics of material flow within the soap film, which results in fascinating, extremely detailed patterns. This flow is characterized by a complex coupling between surfactant concentration and Marangoni surface tension. We propose a novel chemomechanical simulation framework rooted in lubrication theory, which makes use of a custom semi-Lagrangian advection solver to enable the simulation of soap film dynamics on spherical bubbles both in free flow as well as under body forces such as gravity or external air flow. By comparing our simulated outcomes to videos of real-world soap bubbles recorded in a studio environment, we show that our framework, for the first time, closely recreates a wide range of dynamic effects that are also observed in experiment.