While bacterial swarms can exhibit active turbulence in vacant spaces, they naturally inhabit crowded environments. We numerically show that driving disorderly active fluids through porous media enhances Darcy’s law. While purely active flows average to zero flux, hybrid active/driven flows display greater drift than purely pressure-driven flows. This enhancement is nonmonotonic with activity, leading to an optimal activity to maximize flow rate. We incorporate the active contribution into an active Darcy’s law, which may serve to help understand anomalous transport of swarming in porous media.
Published by the American Physical Society
2024