Ultrafast laser technologies became one of the essential tool in the characterization of molecular compounds. Being comprised of spectroscopists, laser scientists, chemists and biologists, the "ultrafast community" is often disconnected and consequently unaware of the developments in microfluidic systems. The challenges of studying limited amount of precious liquid sample by means of ultrafast spectroscopy remains silent and, while no commercial systems are available, each research group is developing its own "homemade" options. This chapter will therefore contribute in filling up the gap that exist between the two communities, that of the ultrafast spectroscopy and that of microfluidics by revealing the importance of this analytical tool as well as the advantages of applying microfluidic technics to it. In this goal, the chapter will focus of the recently developed microfluidic flow-cell. With a minimal volume of about 250 µL, the flow-cell enables the study of precious protein complexes that are simply not available in larger quantities. The multiple advantages of the microfluidic flow-cell will be illustrated by the analysis of the cytochrome bc 1 . In particular, the study will describe how the capabilities of the microfluidic flow-cell enabled the resolution of the ultrafast electronic and nuclear dynamics of specific embedded chromophores.