2021
DOI: 10.1002/nag.3316
|View full text |Cite
|
Sign up to set email alerts
|

A micropolar isotropic plasticity formulation for non‐associated flow rule and softening featuring multiple classical yield criteria

Abstract: The Cosserat continuum is very effective in regularizing the ill‐posed governing equations of the Cauchy/Maxwell continuum. An elasto‐plastic constitutive model for the linear formulation of the Cosserat continuum is here presented, which features non‐associated flow, hardening/softening behaviour and multiple yield and plastic potential surfaces, whilst linear hyper‐elasticity is adopted to reproduce the recoverable response. For the definition of the yield and plastic potential functions, the equivalent von … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
10
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(10 citation statements)
references
References 33 publications
0
10
0
Order By: Relevance
“…It should be noted that, following Panteghini and Lagioia, 2 the approach described in this paper is based on the decomposition of the strain, curvature, stress and couple tensors into their symmetric and skew‐symmetric parts trueγ˜=symbold-italicγ˜+skewbold-italicγ˜=bold-italicε˜+bold-italicω˜trueχ˜=symbold-italicχ˜+skewbold-italicχ˜=trueχ˜sym+trueχ˜skwtrueσ˜=symbold-italicσ˜+skewbold-italicσ˜=trueσ˜sym+trueσ˜skwtrueμ˜=symbold-italicμ˜+skewbold-italicμ˜=trueμ˜sym+trueμ˜skw\begin{eqnarray} \undertilde {{\bm {\gamma }}}&=&\text{sym} \, \undertilde {{\bm {\gamma }}} +\text{skew} \, \undertilde {{\bm {\gamma }}}= \undertilde {{\bm {\uvarepsilon }}} + \undertilde {{\bm {\omega }}}\nonumber \nonumber \\ \undertilde {{\bm {\chi }}}&=&\text{sym} \, \undertilde {{\bm {\chi }}} +\text{skew} \, \undertilde {{\bm {\chi }}}= \undertilde {{\bm {\chi }}}_{sym}+\undertilde {{\bm {\chi }}}_{skw}\nonumber \nonumber \\ \undertilde {{\bm {\sigma }}}&=&\text{sym} \, \undertilde {{\bm {\sigma }}}+\text{skew} \, \undertilde {{\bm {\sigma }}} = \undertilde {{\bm {\sigma }}}_{sym}+\undertilde {{\bm {\sigma }}}_{skw}\nonumber \nonumber \\ \undertilde {{\bm {\mu }}}&=&\text{sym} \, \undertilde {{\bm {\mu }}}+\text{skew} \, \undertilde {{\bm {\mu }}} = \undertilde {{\bm {\mu }}}_{sym}+\undertilde {{\bm {\mu }}}_...…”
Section: Kinematics and Statics Of The Cosserat Continuummentioning
confidence: 94%
See 4 more Smart Citations
“…It should be noted that, following Panteghini and Lagioia, 2 the approach described in this paper is based on the decomposition of the strain, curvature, stress and couple tensors into their symmetric and skew‐symmetric parts trueγ˜=symbold-italicγ˜+skewbold-italicγ˜=bold-italicε˜+bold-italicω˜trueχ˜=symbold-italicχ˜+skewbold-italicχ˜=trueχ˜sym+trueχ˜skwtrueσ˜=symbold-italicσ˜+skewbold-italicσ˜=trueσ˜sym+trueσ˜skwtrueμ˜=symbold-italicμ˜+skewbold-italicμ˜=trueμ˜sym+trueμ˜skw\begin{eqnarray} \undertilde {{\bm {\gamma }}}&=&\text{sym} \, \undertilde {{\bm {\gamma }}} +\text{skew} \, \undertilde {{\bm {\gamma }}}= \undertilde {{\bm {\uvarepsilon }}} + \undertilde {{\bm {\omega }}}\nonumber \nonumber \\ \undertilde {{\bm {\chi }}}&=&\text{sym} \, \undertilde {{\bm {\chi }}} +\text{skew} \, \undertilde {{\bm {\chi }}}= \undertilde {{\bm {\chi }}}_{sym}+\undertilde {{\bm {\chi }}}_{skw}\nonumber \nonumber \\ \undertilde {{\bm {\sigma }}}&=&\text{sym} \, \undertilde {{\bm {\sigma }}}+\text{skew} \, \undertilde {{\bm {\sigma }}} = \undertilde {{\bm {\sigma }}}_{sym}+\undertilde {{\bm {\sigma }}}_{skw}\nonumber \nonumber \\ \undertilde {{\bm {\mu }}}&=&\text{sym} \, \undertilde {{\bm {\mu }}}+\text{skew} \, \undertilde {{\bm {\mu }}} = \undertilde {{\bm {\mu }}}_{sym}+\undertilde {{\bm {\mu }}}_...…”
Section: Kinematics and Statics Of The Cosserat Continuummentioning
confidence: 94%
“…The stress and couple‐stress tensors conjugated in the meaning of Hill 15 to the strain bold-italicγ˜$\undertilde {{\bm {\gamma }}}$ and wryness bold-italicχ˜$\undertilde {{\bm {\chi }}}$ tensors are indicated as bold-italicσ˜$\undertilde {{\bm {\sigma }}}$ and bold-italicμ˜$\undertilde {{\bm {\mu }}}$, respectively. The strong form of the balance equations is (for its derivation see Panteghini and Lagioia 2 ) bold-italicσ˜·̲+bold-italicf̲=0bold-italicμ˜·̲+2σ̲skw+bold-italicc̲=0\begin{equation*} { \def\eqcellsep{&}\begin{array}{c}\undertilde {{\bm {\sigma }}} \cdot \underline{\bm {\bm {\nabla }}} + \underline{\bm {f}}=0 \\ \undertilde {{\bm {\mu }}} \cdot \underline{\bm {\bm {\nabla }}} + 2 \underline{\bm {\sigma }}_{skw} + \underline{\bm {c}} =0 \end{array} } \nonumber \end{equation*}the latter showing that due to the couple‐stress tensor, the stress bold-italicσ˜$\undertilde {{\bm {\sigma }}}$ is not symmetric and that its skew component is bold-italicσ˜skwbadbreak=bold-italice˜̲·12()bold-italicμ˜·̲+bold-italicc̲\begin{equation} \undertilde {{\bm {\sigma }}}_{skw}= \underline{\undertilde {{\bm {e}}}} \cdot \frac{1}{2} {\left(\undertilde {{\bm {\mu }}} \cdot \underline{{\bm {\bm {\nabla }}}} + \underline{{\bm {c}}} \right)} \end{equation}whilst on the surface of the continuum …”
Section: Kinematics and Statics Of The Cosserat Continuummentioning
confidence: 99%
See 3 more Smart Citations