We numerically study both the avalanche instability and many-body resonances in stronglydisordered spin chains exhibiting many-body localization (MBL). We distinguish between a MBL-like regime at finite system sizes or times, and the asymptotic MBL phase. In both Floquet and Hamiltonian models, we identify some "landmarks" within the finite-size MBL regime. Our first landmark is an estimate of where the MBL phase becomes unstable to avalanches, obtained by measuring the slowest relaxation rate of a finite chain coupled to an infinite bath at one end. Our estimates indicate that the actual MBL-to-thermal phase transition, in the limit of an infinite length system, occurs much deeper in the MBL regime than has been suggested by most previous studies. Our other landmarks involve system-wide many-body resonances. We find that the effective matrix elements producing eigenstates with system-wide many-body resonances are enormously broadly distributed. This broad distribution means that the onset of such resonances in typical samples occurs quite deep in the MBL regime, and the first such resonances typically involve rare pairs of eigenstates that are farther apart in energy than the minimum gap. Thus we find that the resonance properties define two landmarks that divide the MBL regime of finite-size systems in to three subregimes: (i) at strongest randomness, typical samples do not have any eigenstates that are involved in system-wide many-body resonances; (ii) there is a substantial intermediate regime where typical samples do have such resonances, but the pair of eigenstates with the minimum spectral gap does not, so that the size of the minimum gap agrees with expectations from Poisson statistics; and (iii) in the weaker randomness regime, the minimum gap is larger than predicted by Poisson level statistics because it is involved in a many-body resonance and thus subject to level repulsion. Nevertheless, even in this third subregime, all but a vanishing fraction of eigenstates remain non-resonant and the system thus still appears MBL in many respects. Based on our estimates of the location of the avalanche instability, it might be that the MBL phase is only part of subregime (i), and the other subregimes are entirely in the thermal phase, even though they look localized in many respects at numerically accessible system sizes.