Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Articular cartilage injuries and defects have limited or no repair capacity. Most of the current surgical techniques can produce only fibrocartilage and not the actual hyaline cartilage. This review explores current trends in articular cartilage treatment, focusing on established approaches, emerging therapies, and future directions. A detailed literature search was performed on PubMed, Scopus, Embase, and Google Scholar in May 2024. All the relevant studies were identified and included in this review. While surgical techniques are crucial, non-operative approaches such as physical therapy with targeted mechanical stimulation or pulsed electromagnetic fields, the use of biomarkers for early diagnosis and treatment, and monitoring play a key role in managing symptoms and supporting the regeneration process. Over the past few decades, various surgical techniques have been developed for treating articular cartilage defects more effectively. Despite the field of cartilage regeneration making significant strides, there are still several key research gaps that need to be addressed. The future of cartilage regeneration is brimming with exciting possibilities such as bioprinting, bioengineering, stem cell therapies, gene editing, and the use of artificial intelligence. Many promising techniques show success in pre-clinical studies but translating them into effective and safe clinical treatments requires further research and large-scale clinical trials. Careful consideration of the ethical implications of using these therapies remains paramount. Hence, cartilage regeneration research is a field brimming with potential. While challenges remain, such as optimizing cell delivery and ensuring the long-term functionality of regenerated tissue, the future looks promising.
Articular cartilage injuries and defects have limited or no repair capacity. Most of the current surgical techniques can produce only fibrocartilage and not the actual hyaline cartilage. This review explores current trends in articular cartilage treatment, focusing on established approaches, emerging therapies, and future directions. A detailed literature search was performed on PubMed, Scopus, Embase, and Google Scholar in May 2024. All the relevant studies were identified and included in this review. While surgical techniques are crucial, non-operative approaches such as physical therapy with targeted mechanical stimulation or pulsed electromagnetic fields, the use of biomarkers for early diagnosis and treatment, and monitoring play a key role in managing symptoms and supporting the regeneration process. Over the past few decades, various surgical techniques have been developed for treating articular cartilage defects more effectively. Despite the field of cartilage regeneration making significant strides, there are still several key research gaps that need to be addressed. The future of cartilage regeneration is brimming with exciting possibilities such as bioprinting, bioengineering, stem cell therapies, gene editing, and the use of artificial intelligence. Many promising techniques show success in pre-clinical studies but translating them into effective and safe clinical treatments requires further research and large-scale clinical trials. Careful consideration of the ethical implications of using these therapies remains paramount. Hence, cartilage regeneration research is a field brimming with potential. While challenges remain, such as optimizing cell delivery and ensuring the long-term functionality of regenerated tissue, the future looks promising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.