Abstract-The density band model proposed by Kassam [1] for robust hypothesis testing is revisited. First, a novel criterion for the general characterization of least favorable distributions is proposed that unifies existing results. This criterion is then used to derive an implicit definition of the least favorable distributions under band uncertainties. In contrast to the existing solution, it only requires two scalar values to be determined and eliminates the need for case-by-case statements. Based on this definition, a generic fixed-point algorithm is proposed that iteratively calculates the least favorable distributions for arbitrary band specifications. Finally, three different types of robust tests that emerge from band models are discussed and a numerical example is presented to illustrate their potential use in practice.