Microplastics (MPs) less than 5 mm in dimension are progressively becoming persistent in aquatic and food ecosystems and are a global concern. Microbeads (less than 1 mm) used in household cleaners, cosmetics, and apparel washing are the primary source, followed by secondary sources including broken-down plastic litter and waste. They are ingested by a range of aquatic animals, including zooplankton, crustaceans, and fish, and can enter human food chains in a variety of manners. Thus, microplastic pollution poses a detrimental effect on the overall ecological balance, including the aquatic ecosystem, food safety, and human health. Strategies such as microbial enzymes/biofilms and nanotechnology-based solutions to MPs biodegradation, the usage of substitute materials such as biodegradable plastics, and source reduction could be employed to mitigate microplastic pollution. In addition, the implementation of plastic waste into the circular economy, for example by applying the reduce, recycle, and reuse approach, could potentially serve as a sustainable solution to abate the adverse effects of plastics. Thus, plastic waste could contribute to a sustainable circular and climate-neutral economy as a result of its durability and recyclability. This review presents a comprehensive report on microplastic management and transformation strategies, reflecting bioremediation coupled with circular economy-based solutions to microplastic pollution. It also highlights future recommendations to stakeholders and for governmental policies for the reduction of plastic pollution by potentially utilizing plastic waste in a circular economy to generate wealth from waste. Overall, this article provides an exhaustive and essential overview of microplastic treatment procedures and their role in the circular economy, where plastic waste generated by aquatic and food-based ecosystems might possibly be managed and re-utilized.