2020
DOI: 10.1155/2020/9582583
|View full text |Cite
|
Sign up to set email alerts
|

A Mixed Discontinuous Galerkin Method for the Helmholtz Equation

Abstract: In this paper, we introduce and analyze a mixed discontinuous Galerkin method for the Helmholtz equation. The mixed discontinuous Galerkin method is designed by using a discontinuous Pp+1−1−Pp−1 finite element pair for the flux variable and the scattered field with p≥0. We can get optimal order convergence for the flux variable in both Hdiv-like norm and L2 norm and the scattered field in L2 norm numerically. Moreover, we conduct the numerical experiments on the Helmholtz equation with perturbation and the rec… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?