In this paper, the stabilized mixed finite element methods are presented for the Navier‐Stokes equations with damping. The existence and uniqueness of the weak solutions are proven by use of the Brouwer fixed‐point theorem. Then, optimal error estimates for the H1‐norm and L2‐norm of the velocity and the L2‐norm of the pressure are derived. Moreover, on the basis of the optimal L2‐norm error estimate of the velocity, a stabilized two‐step method is proposed, which is more efficient than the usual stabilized methods. Finally, two numerical examples are implemented to confirm the theoretical analysis.