Seeking efficient solutions to nonlinear boundary value problems is a crucial challenge in the mathematical modelling of many physical phenomena. A well-known example of this is solving the Biharmonic equation relating to numerous problems in fluid and solid mechanics. One must note that, in general, it is challenging to solve such boundary value problems due to the higher-order partial derivatives in the differential operators. An artificial neural network is thought to be an intelligent system that learns by example. Therefore, a well-posed mathematical problem can be solved using such a system. This paper describes a mesh free method based on a suitably crafted deep neural network architecture to solve a class of well-posed nonlinear boundary value problems. We show how a suitable deep neural network architecture can be constructed and trained to satisfy the associated differential operators and the boundary conditions of the nonlinear problem. To show the accuracy of our method, we have tested the solutions arising from our method against known solutions of selected boundary value problems, e.g., comparison of the solution of Biharmonic equation arising from our convolutional neural network subject to the chosen boundary conditions with the corresponding analytical/numerical solutions. Furthermore, we demonstrate the accuracy, efficiency, and applicability of our method by solving the well known thin plate problem and the Navier-Stokes equation.