To provide a global analysis of gene expression in the aging heart, we monitored the expression of 9,977 genes simultaneously in 5-and 30-month-old male B6C3F1 mice by using high-density oligonucleotide microarrays and several statistical techniques. Aging was associated with transcriptional alterations consistent with a metabolic shift from fatty acid to carbohydrate metabolism, increased expression of extracellular matrix genes, and reduced protein synthesis. Caloric restriction (CR) started at 14 months of age resulted in a 19% global inhibition of age-related changes in gene expression. Interestingly, CR also resulted in alterations in gene expression consistent with preserved fatty acid metabolism, reduced endogenous DNA damage, decreased innate immune activity, apoptosis modulation, and a marked cytoskeletal reorganization. These observations provide evidence that aging of the heart is associated with specific transcriptional alterations, and that CR initiated in middle age may retard heart aging by inducing a profound transcriptional reprogramming.W hen started either early in life or at middle age, caloric restriction (CR) increases average and maximum lifespan, and reduces the incidence and delays the onset of spontaneous cancers and several other age-related diseases (1). Additionally, CR reduces the age-associated increase in reactive oxygen species (ROS)-induced molecular damage (2-5). Previously, we have used high-density oligonucleotide arrays to define aging and CR-related transcriptional alterations in mouse skeletal muscle (6) and brain (7). These reports provided evidence for an age-associated stress response characterized by the induction of heat-shock factors and other oxidative stress-induced transcripts. CR prevented these age-related alterations completely or partially. Both studies provided further support for the concept that oxidative stress may be an important, and perhaps underlying cause of the aging process of postmitotic tissues.The cardiac myocyte is the most energy demanding cell in the body, contracting constantly, 3 billion times or more in the average human lifespan (8), requiring large supplies of high-energy phosphates (9). Age-related changes in human and rodent hearts include a reduction in the number of myocytes (10, 11), myocyte hypertrophy (11, 12), cardiac fibrosis (13), lipofuscin pigment accumulation (14), a reduction in calcium transport across sarcoplasmic reticulum membrane (15), and alterations in the response to -adrenergic stimulation (16). Collectively, these alterations likely contribute to age-related heart diseases being the leading cause of mortality in the U.S. (17). CR reduces the severity of spontaneous cardiomyopathy in male Sprague-Dawley rats (18) and prevents age-associated alterations in late diastolic function in B6D2F 1 mice (19). At the molecular level, CR reduces the concentration of both 8-hydroxydeoxyguanosine in DNA (20) and dityrosine cross-linking of proteins (21) in the heart of aging mice, and prevents somatic mitochondrial genomic rear...