2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) 2016
DOI: 10.1109/dsn.2016.33
|View full text |Cite
|
Sign up to set email alerts
|

A Model-Based Approach to Support Safety-Related Decisions in the Petroleum Domain

Abstract: Abstract-Accidents on petroleum installations can have huge consequences; to mitigate the risk, a number of safety barriers are devised. Faults and unexpected events may cause barriers to temporarily deviate from their nominal state. For safety reasons, a work permit process is in place: decision makers accept or reject work permits based on the current state of barriers. However, this is difficult to estimate, as it depends on a multitude of physical, technical and human factors. Information obtained from dif… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2017
2017
2019
2019

Publication Types

Select...
1
1

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 22 publications
0
1
0
Order By: Relevance
“…For example, the authors of [12] used (untimed) Petri nets to model interdependencies between critical infrastructures and to verify that specific invariants are not violated. SANs have been used in [21] to define an approach for the evaluation of the risk associated with the execution of maintenance operations on petroleum installations. Similarly, the work in [6] defined a framework based on SANs to model and evaluate the impact of cascading effects in electric power systems.…”
Section: Related Workmentioning
confidence: 99%
“…For example, the authors of [12] used (untimed) Petri nets to model interdependencies between critical infrastructures and to verify that specific invariants are not violated. SANs have been used in [21] to define an approach for the evaluation of the risk associated with the execution of maintenance operations on petroleum installations. Similarly, the work in [6] defined a framework based on SANs to model and evaluate the impact of cascading effects in electric power systems.…”
Section: Related Workmentioning
confidence: 99%