2017
DOI: 10.1002/mp.12238
|View full text |Cite
|
Sign up to set email alerts
|

A model-based iterative reconstruction algorithm DIRA using patient-specific tissue classification via DECT for improved quantitative CT in dose planning

Abstract: The simulations indicated that DIRA is capable of determining elemental composition of tissues, which are needed in brachytherapy with low energy (< 50 keV) photons and proton therapy. The algorithm provided quantitative monoenergetic images with beam hardening artifacts removed. Its convergence was fast, image sharpness expressed via the modulation transfer function was maintained, and image noise did not increase with the number of iterations.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
18
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
6
1

Relationship

2
5

Authors

Journals

citations
Cited by 12 publications
(18 citation statements)
references
References 36 publications
0
18
0
Order By: Relevance
“…True mass attenuation coefficients, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\mu _{\mathrm{m,tab}}$\end{document} , for these materials were either taken directly from the EPDL97 library ( 12 ) or derived from elemental compositions taken from. ( 2 ) Corresponding true linear attenuation coefficients were obtained as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\mu _{\mathrm{tab}} = \rho \mu _{\mathrm{m,tab}}$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\rho $\end{document} is the mass density of the material. The coefficients \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$w_1$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$w_2$\end{document} in equation ( 2 ) are linearly proportional to the density of the decomposed material.…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…True mass attenuation coefficients, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\mu _{\mathrm{m,tab}}$\end{document} , for these materials were either taken directly from the EPDL97 library ( 12 ) or derived from elemental compositions taken from. ( 2 ) Corresponding true linear attenuation coefficients were obtained as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\mu _{\mathrm{tab}} = \rho \mu _{\mathrm{m,tab}}$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\rho $\end{document} is the mass density of the material. The coefficients \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$w_1$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$w_2$\end{document} in equation ( 2 ) are linearly proportional to the density of the decomposed material.…”
Section: Methodsmentioning
confidence: 99%
“…The Alvarez–Macovski method (AM) ( 1 ) and the Dual-energy Iterative Reconstruction Algorithm (DIRA) ( 2 ) are image reconstruction algorithms in dual-energy computed tomography (DECT) using a mathematical decomposition of the linear attenuation coefficient (LAC) into energy-dependent basis functions. Both algorithms use energy spectra of photons emitted from the x-ray tube, and both algorithms can produce virtual monoenergetic images at any energy.…”
Section: Introductionmentioning
confidence: 99%
“…Applications in radiation therapy can benefit from the use of dual-energy CT (DECT) as it can provide more information about the material than the single-energy CT [11][12][13][14]. For instance the model-based image reconstruction (MBIR) algorithm DIRA [15] developed by the authors combines automated segmentation with material decomposition for the estimation of elemental composition and mass densities of tissues. These data can be used to derive electron densities and I-values.…”
Section: Introductionmentioning
confidence: 99%
“…Advanced approaches based on multi-material decomposition [16] or the use of segmented-tissue-specific material bases [15] have been proposed. Nevertheless, good results can also be achieved with bone tissue and soft tissue as material bases.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation