We propose a simple physical picture for the generation of coherent radio
emission in the axisymmetric pulsar magnetosphere that is quite different from
the canonical paradigm of radio emission coming from the magnetic polar caps.
In this first paper we consider only the axisymmetric case of an aligned
rotator. Our picture capitalizes on an important element of the MHD
representation of the magnetosphere, namely the separatrix between the
corotating closed-line region (the `dead zone') and the open field lines that
originate in the polar caps. Along the separatrix flows the return current that
corresponds to the main magnetospheric electric current emanating from the
polar caps. Across the separatrix, both the toroidal and poloidal components of
the magnetic field change discontinuously. The poloidal component discontinuity
requires the presence of a significant annular electric current which has up to
now been unaccounted for. We estimate the position and thickness of this
annular current at the tip of the closed line region, and show that it consists
of electrons (positrons) corotating with Lorentz factors on the order of 10^5,
emitting incoherent synchrotron radiation that peaks in the hard X-rays. These
particles stay in the region of highest annular current close to the equator
for a path-length of the order of one meter. We propose that, at wavelengths
comparable to that path-length, the particles emit coherent radiation, with
radiated power proportional to N^2, where N is the population of particles in
the above path-length. We calculate the total radio power in this wavelength
regime and its scaling with pulsar period and stellar magnetic field and show
that it is consistent with estimates of radio luminosity based on observations.Comment: Monthly Notices Letters, in pres