2022
DOI: 10.1109/lca.2022.3215489
|View full text |Cite
|
Sign up to set email alerts
|

A Model for Scalable and Balanced Accelerators for Graph Processing

Abstract: Designing a graph processing system that can scale to graph sizes that are orders of magnitude larger than what is possible on a single accelerator requires a careful codesign of accelerator memory bandwidth and capacity, the interconnect bandwidth between accelerators, and the overall system architecture. We present a high-level bottleneck-analysis model for design and evaluation of scalable and balanced accelerators for graph processing. We show several applications of this model including how to choose the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 9 publications
0
0
0
Order By: Relevance