Redox processes of structural Fe in clay minerals play an important role in biogeochemical cycles and for the dynamics of contaminant transformation in soils and aquifers. Reactions of Fe(II)/Fe(III) in clay minerals depend on a variety of mineralogical and environmental factors, which make the assessment of Fe redox reactivity challenging. Here, we use middle and near infrared (IR) spectroscopy to identify reactive structural Fe(II) arrangements in four smectites that differ in total Fe content, octahedral cationic composition, location of the negative excess charge, and configuration of octahedral hydroxyl groups. Additionally, we investigated the mineral properties responsible for the reversibility of structural alterations during Fe reduction and re-oxidation. For Wyoming montmorillonite (SWy-2), a smectite of low structural Fe content (2.8 wt%), we identified octahedral AlFe(II)-OH as the only reactive Fe(II) species, while high structural Fe content (>12 wt%) was prerequisite for the formation of multiple Fe(II)-entities (dioctahedral AlFe(II)-OH, MgFe(II)-OH, Fe(II)Fe(II)-OH, and trioctahedral Fe(II)Fe(II)Fe(II)-OH) in iron-rich smectites Ö lberg montmorillonite, and ferruginous smectite (SWa-1), as well as in synthetic nontronite. Depending on the overall cationic composition and the location of excess charge, different reactive Fe(II) species formed during Fe reduction in iron-rich smectites, including tetrahedral Fe(II) groups in synthetic nontronite. Trioctahedral Fe(II) domains were found in tetrahedrally charged ferruginous smectite and synthetic nontronite in their reduced state while these Fe(II) entities were absent in Ö lberg montmorillonite, which exhibits an octahedral layer charge. Fe(III) reduction in iron-rich smectites was accompanied by intense dehydroxylation and structural rearrangements, which were only partially reversible through re-oxidation. Re-oxidation of Wyoming montmorillonite, in contrast, restored the original mineral structure. Fe(II) oxidation experiments with nitroaromatic compounds as reactive probes were used to link our spectroscopic evidence to the apparent reactivity of structural Fe(II) in a generalized kinetic model, which takes into account the presence of Fe(II) entities of distinctly different reactivity as well as the dynamics of Fe(II) rearrangements.