2017
DOI: 10.1002/2016jf004065
|View full text |Cite
|
Sign up to set email alerts
|

A model integrating longshore and cross‐shore processes for predicting long‐term shoreline response to climate change

Abstract: We present a shoreline change model for coastal hazard assessment and management planning. The model, CoSMoS‐COAST (Coastal One‐line Assimilated Simulation Tool), is a transect‐based, one‐line model that predicts short‐term and long‐term shoreline response to climate change in the 21st century. The proposed model represents a novel, modular synthesis of process‐based models of coastline evolution due to longshore and cross‐shore transport by waves and sea level rise. Additionally, the model uses an extended Ka… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

6
246
0
2

Year Published

2017
2017
2023
2023

Publication Types

Select...
7
2

Relationship

1
8

Authors

Journals

citations
Cited by 221 publications
(254 citation statements)
references
References 75 publications
(159 reference statements)
6
246
0
2
Order By: Relevance
“…The models of Hanson et al (), Larson et al (), and Palalane et al () are an exception as they incorporate several physical processes trying to include beach and foredune change in response to cross‐shore processes of foredune growth by wind and foredune erosion (FDE) by storms, and by gradients in longshore sand transport that will alter shoreline position. Vitousek, Barnard, Limber, Erikson, et al () have introduced a hybrid transect‐based model composed of a one‐line longshore transport model, a cross‐shore equilibrium shoreline model, and a sea level‐driven shoreline recession model. The model of Vitousek, Barnard, Limber, Erikson, et al () covers a wide range of important processes for understanding coastal behavior, and the implemented data assimilation technique has improved the model's accuracy in comparison with measurements.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…The models of Hanson et al (), Larson et al (), and Palalane et al () are an exception as they incorporate several physical processes trying to include beach and foredune change in response to cross‐shore processes of foredune growth by wind and foredune erosion (FDE) by storms, and by gradients in longshore sand transport that will alter shoreline position. Vitousek, Barnard, Limber, Erikson, et al () have introduced a hybrid transect‐based model composed of a one‐line longshore transport model, a cross‐shore equilibrium shoreline model, and a sea level‐driven shoreline recession model. The model of Vitousek, Barnard, Limber, Erikson, et al () covers a wide range of important processes for understanding coastal behavior, and the implemented data assimilation technique has improved the model's accuracy in comparison with measurements.…”
Section: Introductionmentioning
confidence: 99%
“…Vitousek, Barnard, Limber, Erikson, et al () have introduced a hybrid transect‐based model composed of a one‐line longshore transport model, a cross‐shore equilibrium shoreline model, and a sea level‐driven shoreline recession model. The model of Vitousek, Barnard, Limber, Erikson, et al () covers a wide range of important processes for understanding coastal behavior, and the implemented data assimilation technique has improved the model's accuracy in comparison with measurements. However, in this model water level variations other than SLR do not affect computed shoreline erosion rates and during conditions of very low wave energy (or no energy) and SLR, the profile still readjusts at a constant rate given by the “Bruun Rule” (Bruun, ).…”
Section: Introductionmentioning
confidence: 99%
“…Despite their vulnerability to storms and sea‐level rise—event‐driven and chronic natural hazards—these environments tend to be intensively developed (Wong et al, ), motivating efforts to quantify present and historical rates of shoreline change and assess erosion risk, in the United States (Armstrong & Lazarus, ; Fletcher et al, ; Gibbs & Richmond, ; Gornitz et al, ; Hapke et al, ; Hapke et al, ; Hapke et al, ; Hapke & Reid, ; Morton et al, ; Morton et al, ; Morton & Miller, ; Ruggiero et al, ) and internationally (e.g., Coelho et al, ; Nicholls & Vega‐Leinert, ; Shaw et al, ). Related to this empirical work are efforts to explain past and predict future trends in shoreline behavior with numerical models of coastal processes and environmental conditions (Ruggiero et al, ; Gutierrez et al, ; Hapke et al, ; Plant et al, ; Vitousek et al, ; Yates & Le Cozannet, ). However, modeled and observed shoreline changes on sandy coastlines still tend to show poor agreement over larger‐spatial (>10 1 km) and longer‐temporal (>10 1 years) scales (e.g., Gutierrez et al, ; French et al, ; Yates & Le Cozannet, ).…”
Section: Introductionmentioning
confidence: 99%
“…Pour le cas des littoraux sableux dominés par l'action des vagues, ces modèles complexes échouent encore à simuler les évolutions du trait de côte sur le moyen (année/décennie) et long-terme (siècle) du fait de limitations physiques et numériques (cascade d'erreurs au travers des échelles et temps de calcul très longs). Pour ces échelles, l'utilisation de modèles numériques de trait de côte à complexité réduite représente une alternative pour simuler des évolutions de manière fiable et avec des temps de calcul raisonnables (VITOUSEK et al, 2017). Dans le cas des littoraux sableux dominés par l'action des vagues, les évolutions du trait de côte sont généralement dominées sur le moyen et long-terme par les gradients longshore spatiaux de transport sédimentaire longshore, et sur le plus court-terme par les processus cross-shore liés à la variabilité temporelle des caractéristiques des vagues incidentes.…”
Section: Introductionunclassified