A nanodosimeter is a type of detector which measures single ionizations in a small gaseous volume in order to obtain ionization cluster size probability distributions for characterization of radiation types. Working nanodosimeter detectors are usually bulky machines which require a lot of space. In this work, the authors present a compact ceramic nanodosimeter detector and report on first measurements of cluster size distributions of 5 MeV alpha particles. Methods: Single ionization measurements are achieved by applying a weak electric field to collect positive ions in a hole in a ceramic plate. Inside the ceramic plate, due to a strong electric field, the ions are accelerated and produce impact-ionizations. The resulting electron avalanche is detected in a read-out electrode. A Bayesian unfolding algorithm is then applied to the experimentally obtained cluster size distributions to reconstruct the true cluster size distributions. Results: Experimentally obtained cluster size distributions by the compact nanodosimeter detector are presented. The reconstructed cluster size distributions agreed well with Monte Carlo simulated cluster size distributions for small volumes (diameter = 2.5 nm). For larger volumes, discrepancies between the reconstructed cluster size distributions and cluster size distributions from Monte Carlo simulations were observed. Conclusions: For the first time, ionization cluster size probability distributions could be obtained by a small and compact nanodosimeter detector. This signifies the achievement of a critical step toward the wide application of nanodosimetric characterization of radiation types including in clinical environments.