Long-term durability against leaching is considered necessary and is currently treated as an important issue. Electrical treatment, which can accelerate deterioration due to ion migration, has been used to evaluate long-term durability against leaching. In the case of nuclear waste disposal and facilities, long-term performance for hundreds or thousands of years is expected. The purposes of this research were to investigate with electrical treatment 1) chemical alteration, such as decrease of Ca(OH) 2 and Ca/Si ratio of C-S-H, 2) physical alteration, such as increase of cumulative pore volume and threshold pore, 3) the feasibility of electrical treatment for the evaluation of diffusion coefficient alteration due to leaching with void ratio, and 4) the proposition of a simple and feasible method to evaluate the continuous pore structure after electrical treatment with MIP (Mercury Intrusion Porosimeter). This study yielded important data for understanding leaching alteration by electrical treatment and indicating the feasibility of applying electrical treatment. Moreover, it was revealed that the continuous pore structure, concerning the durability of cementitious materials, can be resolved by hysteresis curves under increased and decreased pressures in MIP.