Plasmodium falciparum–infected erythrocytes bind endothelial receptors to sequester in vascular beds, and binding to ICAM1 has been implicated in cerebral malaria. Binding to ICAM1 may be mediated by the variant surface antigen family PfEMP1: for example, 6 of 21 DBLβC2 domains from the IT4 strain PfEMP1 repertoire were shown to bind ICAM1, and the PfEMP1 containing these 6 domains are all classified as Group B or C type. In this study, we surveyed binding of ICAM1 to 16 DBLβC2 domains of the 3D7 strain PfEMP1 repertoire, using a high throughput Bioplex assay format. Only one DBL2βC2 domain from the Group A PfEMP1 PF11_0521 showed strong specific binding. Among these 16 domains, DBL2βC2PF11_0521 best preserved the residues previously identified as conserved in ICAM1-binding versus non-binding domains. Our analyses further highlighted the potential role of conserved residues within predominantly non-conserved flexible loops in adhesion, and, therefore, as targets for intervention. Our studies also suggest that the structural/functional DBLβC2 domain involved in ICAM1 binding includes about 80 amino acid residues upstream of the previously suggested DBLβC2 domain. DBL2βC2PF11_0521 binding to ICAM1 was inhibited by immune sera from east Africa but not by control US sera. Neutralizing antibodies were uncommon in children but common in immune adults from east Africa. Inhibition of binding was much more efficient than reversal of binding, indicating a strong interaction between DBL2βC2PF11_0521 and ICAM1. Our high throughput approach will significantly accelerate studies of PfEMP1 binding domains and protective antibody responses.