To improve the performance of a current loop, this paper presents a novel current control scheme for an interior permanent magnet synchronous motor (IPMSM) based on the model predictive control (MPC) algorithm in a synchronous rotating frame (dq-frame). The recently developed explicit MPC (EMPC) is introduced to ensure the feasibility of real-time implementation in the control hardware. To achieve feasible reformulation of the current control problem using EMPC, a coupled nonlinear IPMSM mathematical model is linearized using an augmented model with disturbance. Furthermore, to approximate the related quadratic stator current and voltage constraints in the dq-frame, they are also transformed into a series of linear inequalities. We propose an improved disturbance observer based on the augmented model, in conjunction with the concept of offset-free MPC, to estimate both the disturbance terms and the state variables from the predicted and measured outputs. All the influences of plant/model mismatches and un-modeled nonlinear terms are removed by the estimated total disturbance within the closed-loop framework of EMPC. The proposed EMPC scheme not only improves both the dynamic performance and the steady-state precision of the current loop, but it also exhibits robustness against parameter uncertainties. The proposed method has been proven and verified successfully in both simulation and experiment. INDEX TERMS Interior permanent magnet synchronous motor (IPMSM), current control, model predictive control (MPC), explicit solution, disturbance observer.