To reduce the impact of the imbalance of mixed non-linear loads on an inverter voltage output in the microgrid, we improve the disadvantage of the lack of damping and inertia for traditional droop control. This paper proposes a comprehensive virtual synchronous generator (VSG) control strategy for harmonic suppression and imbalance suppression of a multi-inverter parallel microgrid. On one hand, an improved VSG control strategy is proposed to increase the damping and inertia of distributed generations (DGs) in the microgrid, and secondary control is introduced to improve system stability. On the other hand, the frequency division suppression control strategy is used to eliminate the influence of harmonics, and the negative sequence component is compensated to eliminate the influence of imbalance. Then small-signal analysis is used for analysis of the stability of the strategy. Finally, we verify the comprehensive control strategy proposed in this paper through experiments. The experimental results suggest a significant improvement on the voltage, frequency, power optimization, handling of non-linear load and capacity distribution precision, as well as providing inertia support for the system.